Black-Box Models and Sociological Explanations: Predicting High School Grade Point Average Using Neural Networks
نویسندگان
چکیده
منابع مشابه
Whitening Black-Box Neural Networks
Many deployed learned models are black boxes: given input, returns output. Internal information about the model, such as the architecture, optimisation procedure, or training data, is not disclosed explicitly as it might contain proprietary information or make the system more vulnerable. This work shows that such attributes of neural networks can be exposed from a sequence of queries. This has ...
متن کاملThe Joint Use of ACT® Scores and High School Grade Point Average for Predicting Success at Community Colleges
5582 ACT research has found that the joint use of test scores and high school grade point average (HSGPA) provides more information than either test scores or HSGPA alone for predicting college success. Consequently, ACT has advocated for the use of multiple measures when making admission and course placement decisions. This paper aims to help two-year institutions understand the benefits of us...
متن کاملPrograms as Black-Box Explanations
With increasing complexity of machine learning systems being used1, there is a crucial need for providing insights into what these models are doing. Model-agnostic approaches [18], such as Baehrens et al. [1] and Ribeiro et al. [17], have shown that insights into complex, black-box models do not have to come at a cost of accuracy, and that accurate local explanations can successfully be provide...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Comparing Prediction Power of Artificial Neural Networks Compound Models in Predicting Credit Default Swap Prices through Black–Scholes–Merton Model
Default risk is one of the most important types of risks, and credit default swap (CDS) is one of the most effective financial instruments to cover such risks. The lack of these instruments may reduce investment attraction, particularly for international investors, and impose potential losses on the economy of the countries lacking such financial instruments, among them, Iran. After the 2007 fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Socius: Sociological Research for a Dynamic World
سال: 2019
ISSN: 2378-0231,2378-0231
DOI: 10.1177/2378023118817702